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TheOberstmethodis widely usedfor themeasurementof themechanicalpropertiesof viscoelastic
or dampingmaterials.The applicationof this method,as describedin the ASTM E756 standard,
givesgoodresultsaslong astheexperimentalset-updoesnot interferewith thesystemundertest.
The main difficulty is to avoid addingdampingandmassto the beamowing to the excitationand
responsemeasurement.In this paper, a methodis proposedto skirt thoseproblems.The classical
cantileverOberstbeamis replacedby a double sized free-freebeamexcited in its center. The
analysisis basedon a frequencyresponsefunction measuredbetweenthe imposedvelocity at the
center(measuredwith anaccelerometer) andanarbitrarypoint on thebeam(measuredwith a laser
vibrometer). The compositebeam(basebeam+ material) propertiesare first extractedfrom the
measurementby anoptimizationalgorithm.Young’s modulusandstructuraldampingcoefficientof
thematerialundertestcanbededucedusingclassicalformulationsof theASTM E756standardfor
typical materialsor usinga finite elementmodelfor morecomplexcases.An applicationto a thick
and soft viscoelasticmaterial is presented,the resultsare shownto be consistentwith Kramers–
Kronig relations.© 2004AmericanInstituteof Physics.[DOI: 10.1063/1.1777382]

I. INTRODUCTION

The “Oberstbeam”is a classicalmethodfor the charac-
terizationof dampingmaterialsbasedon a multilayer canti-
lever beam(basebeam1 oneor two layersof othermateri-
als). As thebasebeamis madeof a rigid andlightly damped
material (steel, aluminum), the most critical aspectof this
methodis to properlyexcitethebeamwithout addingweight
or damping.So, exciting the beamwith a shakeris not rec-
ommendedbecauseof theaddedmass(movingmass,stinger
misalignment,force transducer). Alternative solutions are
suggestedin theASTM E576standard.1 An electromagnetic
noncontactingtransducer(tachometerpick-up, for example)
canprovidegoodexcitationbut it is limited to ferromagnetic
materials.As aluminumis widely usedfor the basebeam,a
small pieceof magneticmaterialmust be glued to achieve
specimenexcitation.

This methodcreatestwo otherproblems.Thefirst oneis
the difficulty to properly measurethe excitation force. If
thereis no contact,the injectedforce must be evaluatedby
the measurementof the voltage or current applied to the
pick-up, without knowing what is really proportionalto the
appliedforce. Moreover, this systemis linear for small am-

plitudes.As themeasurementis madenearresonancesof the
structure,it is not obviousthat the hypothesisof linearity is
respected.Thesecondproblemis thefact thatthesmallpiece
of ferromagneticglued to the structureis anothersourceof
uncertainty(addeddampingdue to the gluing, massof the
addedpiece).

Themeasurementof the responseof thebeamis usually
madeusingan accelerometer. Even if the problemof added
dampingand massis much lesscritical becausesmall and
light accelerometersare available,it is preferableto avoid
this solution for the samereasonsas above.A straightfor-
ward solution is to usea laservibrometer, which can accu-
ratelymeasuredynamicvelocitieswith no contact.However,
this equipmentis muchmoreexpensivethana simpleaccel-
erometer.

Anotherproblemcanoccurbecauseof theclampedcon-
dition of thebeam,seeFig. 1. Theclampingis simulatedby
an increaseof the thicknessof thebeam(the root). This root
is wedgedinto a heavyand stiff clampingsystem.Usually
this systemis satisfactorybut problemscanoccurin thecase
of misalignment,insufficient clamping force, and bad ma-
chining of the root.

Theobjectiveof this studyis to developanalternativeto
methodthe one proposedin the ASTM E756 standard,1 in
order to avoid experimentaluncertaintiesand increasethe
precisionof the measurement.
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II. PRINCIPLE

A cantileverbeamhasthesamedynamicalbehaviorthan
a free-freebeamof twice thelengthexcitedin its centerby a
normal imposeddisplacementY0, seeFig. 2. In this case,
only the evenmodesof the free-freebeamwill be excited,
and its modal behaviorwill be similar to a clampedbeam
sincethe slopeandthe relativedisplacementto the imposed
motion arenull at this point.

An experimentalset-upfor the free-freebeamexcitedin
its centeris proposedin Fig. 3. Thebeamundertest(with or
without dampingmaterial) is simply screwedin its centerto
anelectrodynamicshakerby meanof a threadedrod. In prac-
tice this is easyto setup; howevercaremustbetakenon the
precisionof thelocationof thecenterto avoidanunbalanced
system.

III. THEORETICAL BACKGROUND

A. Beam equation: Compact model

The bendingvibrationsof a beamaredescribedby

Ysx,vd = C coshsbxd + D sinhsbxd + F cossbxd

+ G sinsbxd s1d

with

b 4 =
rAv2

EI
, s2d

whereC, D, F, andG are four unknowncoefficientsdeter-
minedfrom boundaryconditions,A is thecross-sectionarea,
v thepulsation,r themassdensityof thebeam,E theelastic
modulus(or Young’s modulus), and I the secondmomentof
areaof the beamcrosssection.

For the free–freebeamproblem shown in Fig. 2, the
following four boundaryconditionsareused:

EI
]

2Y

] x 2 = 0 at x = 0 andx = L, s3d

]

] x
SEI

]
2Y

] x 2D = 0 at x = 0 andx = L, s4d

whereL is the lengthof the beam.
Theseequationsrepresentthe bendingmomentand the

shear force at both extremitiesof the beam, respectively.
Conditionsat x=0 lead to a simplification of Eq. (1): C=F
andD=G.

The imposeddisplacementY0 along the normal axis at
the centerpoint givesthe following cinematicconstraintsto
apply on Eq. (1):

YsL/2d = Y0, s5d

] YsL/2d

] x
= 0. s6d

Finally, if H is theratio of thedynamicresponseof thebeam
divided by the imposedmotion,Eqs.(1)–(6) yield to

Hsx,vd =
1

2

coshsbL/2d + cossbL/2d

1 + coshsbL/2dcossbL/2d
fcoshsbxd

+ cossbxdg

+
1

2

sinhsbL/2d − sinsbL/2d

1 + coshsbL/2dcossbL/2d
fsinhsbxd

+ sinsbxdg. s7d

In this equation,the natural frequencyequationfor a
clamped-freebeamof lengthL /2 is found in the denomina-
tor. This confirmsthe validity of the principle of the method
explainedin Sec.II, in which the free–freebeamexcitedin
its centeris similar to the Oberstbeam.

It mustbenotedthat thesamemodelis usedfor boththe
barebeamandthe compositebeam.In the secondcase,the
beamis seenasa homogenousequivalentbeam.The objec-
tive is to determinethe productE3 I of the beamundertest
whereE is the complexequivalentYoung’s modulus:

E = E8s1 + jhd s8d

with

FIG. 3. Proposedexperimentalset-up:a compositebeamexcitedin its cen-
ter by a normal imposeddisplacement.

FIG. 1. Cantileverbeamusedin the Oberstmethod.

FIG. 2. Similarity betweena free-freebeamexcited in its centerand a
cantileverbeamexcitedby its base.
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E8: Realpart of the Young’s modulus,

h: Structuraldampingcoefficientsreal valued.

I is theequivalentsecondmomentof area.Theextractionof
the materialmechanicalpropertiesis madein a secondstep.
Equation(7) is the “compact” model of the beam,because
there is no need to make a modal decomposition,all the
informationis includedin this singleequation.

B. Validation of the model

Themodelhasbeenvalidatedusingtwo beams.Thefirst
one is a 400.00mm long sLd aluminumbeamof 19.97mm
wide swd and 1.58mm thick sH1d. The real part of its
Young’s modulusE1 is 70.0GPaand its structuraldamping
coefficienth1 is 0.0007.Thesevalueshavebeentakencon-
stant for preliminary validation purposes.The results are
given in Fig. 4 for a measurementpoint at the tip x=0 of the
beam.Theagreementbetweenthemodel’s predictionandthe
measurementis good.Themodalpeaksarewell located,the
measuredand calculated levels are close. The measured
curveis obtainedusingtheset-updepictedin Fig. 3. Experi-
mentalset-upwill be discussedin detail in Sec.IV.

The frequency responsefunction (FRF) between the
middle point where the beamis excitedand the tip of the
beamtendstowards1 (0 dB) betweentwo modes,the two
pointsarevibratingin phasewith thesameamplitude.Neara
mode,the responsepoint reacheshigh amplitudescontrolled
by thedamping.The frequenciesof themodescouldbepre-
dictedusingthe classicalformulationfor a cantileverbeam.
Conversely, thoseFRFscanbe useddirectly to calculatethe
mechanicalpropertiesof materialsusing the ASTM E756
standardfor example.

Thesecondexample(Fig. 5) is theresultof themeasure-
menton the samebeamwith an unknowndoublesidedad-
hesiveof thicknessH2=0.13mm. TheYoung’s modulushas
been adjusted,for the first mode, to obtain an equivalent
complexmodulusE allowing a goodfitting of thecalculated
curvewith themeasuredonefor thefirst resonance.Thefact
that the real part of the Young’s modulusand the damping
coefficientof thecompositebeamarenot constantcannotbe
clearly seenon this scalealthoughit can be verified. This

exampleshowsthat the compactmodelcanalsobe usedfor
compositebeams.In the following, the resultswill not be
presentedon sucha wide frequencyband.Theywill concen-
trateon eachmodeseparately, in orderto obtainat leastone
valuefor the dampingandYoung’s modulusfor eachmode.

The advantageof this methodis to calculatethe proper-
ties of the compositebeamusingseveraldatapointsandthe
real analyticalformulation for the curve fitting. The ASTM
E756standardusesthevaluesof themodalfrequencies(read
at the peaks) and damping(measuredwith an n dB band-
width method). The modal frequencyis equal to the peak
frequencyaslong asthedampingis light, in thecaseof high
damping, the natural frequencyshould be corrected.Sec-
ondly, then dB bandwidthmethodis a quick way to evaluate
thedampingand,actually, is not very precise.A curvefitting
method is preferable.However, usual curve-fitting algo-
rithms are basedon trial functions,which are not the real
function.Thesecondobjectiveof this work is to improvethe
precisionof thedeterminationof materialspropertiesusinga
function which depictsthe real physicalproblem:Eq. (7).

C. Calculation of material properties

In the following, the approachis the sameastheASTM
E756 standard,the calculation of material propertiesare
basedon the samemodels.The only differenceis that the
ASTM E756 standardseparatesthe Young’s modulus(real
number) to thedamping(realnumber) andmakestwo calcu-
lations.In this study, all the moduli arecomplexnumbers.

1. Extensional damping
When the dampingmaterial is unconstrained(glued on

one or two facesof the basebeam), the treatmentis called
extensionaldamping.As one of the facesof the material is
free, the addedrigidity is due to the bending.The determi-
nationof the materialspropertiesis basedon the Ross,Un-
gar, andKerwin2,3 model for a multilayer structure.The re-
ferredmodelallows to calculatetheflexural rigidity E3 I of
a multilayer beamor plateusingthe propertiesof the differ-
entlayers(density, thickness,length,Young’s or shearmodu-

FIG. 4. Validation of the compact model, bare aluminum beam (L
=400 mm, w=19.97mm, H1=1.58mm).

FIG. 5. Validationof thecompactmodel,aluminumbeamwith anunknown
adhesivelayer (L=400 mm, w=19.97mm, H1=1.58mm, H2=0.13 mm).
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lus). The following equationsgive the equivalentflexural
rigidity for a singlesideddampedbeamanda doublesided
dampedbeam,respectively:

EI = E1I1S1 + eh3 + 3s1 + hd2 eh

1 + eh
D , s9d

EI = 2E2I2 + E1I1, s10d

with e, Young’s modulus ratio E2/E1; h, thicknessratio
H2/H1; E1, Young’s modulusof the basebeamsN.m−2d; I1,
secondmomentof areaof thebasebeamcrosssectionsm4d;
H1, thicknessof thebasebeam(m); E2, Young’s modulusof
thetestedmaterialsN.m−2d; I2, secondmomentof areaof the
testedmaterialcrosssectionsm4d; H2, thicknessof thetested
material(m).

The calculationof the Young’s modulusof the material
E2 usingEq. (9) leadsto the resolutionof anequationof the
secondorder(two complexroots). But only theroot with the
positivereal andimaginarypart is the physicalsolution.

2. Shear damping
Whenthematerialis constrainedbetweenthebasebeam

and a rigid layer, the compositebeamhasa slightly higher
flexural rigidity due to the sheardeformationof the sand-
wichedmaterial,which is muchhigherthanthe bendingde-
formation alone. Equation (11) (Ref. 3) gives the flexural
rigidity for a compositebeamwith a sheardampingtreat-
mentassumingthat thebasebeamandtherigid constraining
layer aresimilar,

EI =
E1I1

6
+ E1H1sH1 + H2d2 G2

E1H1H2b 2 + 2G2
s11d

with G2 the complex shearmodulusof the testedmaterial
sN.m−2d.

Thesecondtermof Eq. (11) is dueto theflexuralrigidity
of the sandwichedmaterial.For soft material,this term can
beneglectedfor thefirst modes.However, it is interestingto
note that the sheardeformationenergy decreasesas the fre-
quencyincreasesdue to the division by the squaredmodal
constant.

The complexYoungmodulus(or shearmodulus) canbe
extractedfrom Eqs.(9) to (11) whenthe compositeflexural
rigidity E3 I hasbeenpreviouslydeterminedby the curve
fitting of Eq. (7) with experimentalmeasurementsfor each
frequencyband containingone vibration mode. It must be
noted that expressions(9)–(11) dependon assumptionsde-
tailed in Refs.1 and3.

IV. APPLICATION

Estimationsof the Young’s modulusand the structural
dampingcoefficientof a polyvinyl chloridebasedviscoelas-
tic materialare presentedas an applicationof the proposed
experimentalset-up.This material of density 1260kg.m−3

will be namedmaterialR in the following.

A. Preparation of experiments

1. Selection of test configuration

Thefirst stepis to selectthemostappropriatebeamcon-
figuration for the test. If the material under test is rigid
enoughto bemeasuredalone,this is thebestway to proceed.
If not, it is suggestedto start with the sandwichcomposite
beam for softer materials like thin elastic materials.For
heavieror morerigid materials(dampingsheets), the single
sidebeamcanbe tried, but the basebeamshouldbe asthin
as possibleand should never be thicker than the material
undertest.Globally, theASTM E756recommendationsmust
be followed.

From static observations,the one side configurationis
chosenfor materialR.

2. Gluing
Thegluing of thematerialundertestis anothersourceof

error. Somematerialsare self-adhesive,and in somecases
the glue is not strongenoughto insurea good contactbe-
tweenthe two surfaces.In the caseof slipping, the imposed
deformationfrom thebasebeamto thematerialcanleadto a
slight underestimationof thepropertiesof thematerial.Thin
doublesidedadhesivescan be usedbut greatcaremust be
takenasthe adhesivelayer’s presencecanaffect the results.
Particularly, it mustbe kept to a minimum thicknessasrec-
ommendedin theASTM E756standard.

To insurethat the gluing of materialR is sufficient, the
doublesidedadhesivepresentedin Sec.III B is used.Pre-
liminary testshaveshownthat theadhesivelayermodify the
responseof thebeam(seeFig. 5 comparedto Fig. 4). A first
inversion,usingthemethoddescribedin Sec.III C 1, is thus
realized to estimatean equivalent Young’s modulus and
structuraldampingcoefficient for the aluminumbeamwith
adhesivelayer.

B. Experimental set-up

Theexperimentalset-upis shownin Fig. 6. Thedamping
layeris gluedto thealuminumbeamwith a thin doublesided
adhesive.An electrodynamicshakerdriven by a white noise
signalexcitesthe multilayer in its centerthrougha line dis-
placement.Thetip motion is measuredwith a laservibrome-
ter and the centermotion usingan accelerometer. To obtain
displacements,one time integrationand a doubletime inte-

FIG. 6. Experimentalset-up.
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grationareperformedon the laservibrometersignal,andon
the accelerometersignal,respectively.

Note that the rod’s diametermust be minimum to sup-
port the accelerometerandimposethe local displacement.

Measurements have been realized between
980–1000mbar of static pressurewith 10% –20% of rela-
tive humidity.

C. Results

Figure 7 presentssix FRF measurementsobtainedfor
materialR at temperaturesfrom 30°C to 5°C. In this figure,
the frequencyand temperaturedependenceof the material’s
stiffnessandits structuraldampingis clear. The viscoelastic
materialstiffnessdecreaseswith temperature.

The thickness of the material sample is
6.35mm s1/4 in.d. Theclassicalanalysisfor thin beamsde-
scribedin Sec.III C or in theASTM E756(Ref. 1) standard
is not relevantfor sucha thickness.Consequently, a hierar-

chical three-dimensionalfinite elementsoftware4 is usedin
the inversionto model the materialR perfectlybondedonto
the equivalent beam defined in Sec. III B. A quasistatic
measure5 of material R Poissonratio nxz revealsan elastic
anisotropy, 0.11.Although this value is not usual,it will be
usedin the 3D simulationandassumedto be real andcon-
stant in the frequencyrangeof interestand in temperature.
This latter assumptioncanbe challengeable.6

The rigidity of the previousbasebeam,with a double
sidedadhesivelayer, is comparedto theaddedrigidity dueto
the materialR undertest.Thesecomparisonsat variousfre-
quenciesand temperaturesallow to characterizematerialR
elasticproperties.

Figure 8 shows the variation of the real part of the
Young’s modulus, in the x-direction, with frequency and
temperaturefor material R: E38. Theseresultsare obtained
from measurementsof Fig. 7 and the useof a Levenberg–
Maquardtinversionalgorithm.7,8 Thefigureconfirmstheear-

FIG. 8. Variationsof the real part of Young’s modulusE38 with frequency
andtemperaturefor viscoelasticmaterialR. +: 5°C, s: 10°C, h: 15°C, n:
20°C, !: 25°C, L: 30°C. Measurementpoints for eachtemperatureare
linked for the sakeof legibility, not to suggesta linear evolution between
thesepoints.

FIG. 9. Variationsof the structuraldampingcoefficienth3 with frequency
andtemperaturefor viscoelasticmaterialR. +: 5°C, s: 10°C, h: 15°C, n:
20°C, !: 25°C, L: 30°C. Measurementpoints for eachtemperatureare
linked for the sakeof legibility, not to suggesta linear evolution between
thesepoints.

FIG. 7. Measuredfrequencyresponsesfor a one side
configurationbeam with viscoelasticmaterial R as a
function of frequencyandtemperature.
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lier observations:the material’s modulusdecreasessignifi-
cantly with temperature.

The variation of structuraldampingh3 with frequency
and temperature,for this viscoelasticmaterial, is shown in
Fig. 9. Oneshouldnote that the dampingcoefficientvalues
for materialR arehigh.Suchdampingvalueshave,however,
beenpreviouslyreported(seeRefs.9 and10 for example). A
material’s statetransition,which will be more clearly high-
lighted in Fig. 11 of Sec.IV D, canalsobe observed.

In thesetwo seriesof results,Figs. 8 and 9, the first
moderesultshavebeenignoredbecauseof high sensibility
of this modeto boundaryconditions.The samecoefficients
of variation as in the ASTM E756 standardappliedon the
precisionsof theseresults,i.e., 10% –20%.

D. Validation

The consistencyof measurementdatafor materialR are
discussedlooking in Figs. 10 and 11. Thesefigures show
results of the time–temperaturesuperposition(TTS) prin-
ciple applicationfor materialR.11,12

A curvefitting for the real part of theYoung’s modulus,
E38, using the fractional Zenermodel13 with parametersM0

=3.983106 N.m−2, c=202, a=0.553, and t=1.82310−6 s
is donein Fig. 10.

In Fig. 11, measurementsof the structuraldampingco-
efficienth3 arecomparedwith the theoreticalcalculationus-
ing the local Kramers–Kronigrelationsfrom dispersionof

theYoung’s modulus.13 The valueof a greaterthan0.5 and
the low accuracyof structuraldampingcoefficientmeasure-
ments can explain the underestimationof the theoretical
calculus.13
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FIG. 11. TTS application:mastercurveof thestructuraldampingcoefficient
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