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Is it possible to find a two-dimensional �2D� periodic unit cell representative of the dynamic viscous
dissipation properties of a real porous media? This is a challenging question addressed in this paper
through a review of tools and methods of experimental and computational micro�poro�mechanics.
The combination of advanced experimental imaging and numerical homogenization techniques
provides a unique opportunity to understand and assess the limits of two-dimensional models of
microstructures, as a potential basis for the engineering prediction of macroscopic properties of
acoustical materials. This is illustrated for a real sample of open-cell aluminum foam. The
conclusion, based on this analysis, is that the 2D periodic foam model geometry provides a reliable
estimate of the dynamic permeability, except in the low frequency range. This is not surprising
because in the 2D periodic foam model geometry, ligaments are always perpendicular to the flow
direction, thus decreasing artificially the static permeability of the viscous flow. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2829774�

I. INTRODUCTION

The general objective of this work is the determination
of the acoustical macrobehavior at the local scale of real
porous media. In this purpose, one needs first to determine
the local geometry of the media, and second to solve the
partial differential equations governing the propagation phe-
nomena of an acoustic wave such as the frequency dependent
thermal and viscous dissipation effects. The first step is made
feasible by the modern technique of x-ray computed micro-
tomography ��CT�. Various geometrical properties can be
determined on the experimental sample with a view to char-
acterize the representative parameters of its cellular morphol-
ogy and reconstruct the porous medium by means of a three-
dimensional �3D� idealized periodic unit cell �PUC�. This
technique was applied to the characterization of open-cell
aluminum foam samples, and good predictions of the purely
geometrical macroscopic properties were obtained.1 Simula-
tion results of frequency dependent heat conduction through
3D reconstructed unit cells of an open-cell aluminum foam
under acoustic excitations have also been recently reported.
The random-walker algorithm was applied to the calculation
of the dynamic bulk modulus and compared to laboratory
measurements with good agreements.2

Several authors have reported analytical, numerical, and
experimental studies of effective viscous dissipation proper-
ties of periodic porous structures in the long wavelength
limit.3–7 Oscillatory flows have been studied analytically in
straight capillaries and between two parallel plates.3,4 Ad-
vanced numerical investigations consist in solving the steady
Stokes, unsteady Stokes, and electric boundary value prob-
lems governing viscous dissipation mechanisms in the low
frequency, fully dynamic, and high frequency regimes, re-

spectively. A pioneering work was a finite element approach
for the sinusoidally modulated tube, the fused-spherical-bead
lattice, and the fused diamond lattice by Sheng and Zhou.5

They computed the dynamic viscous permeability k���, as
well as other asymptotic parameters such as the static vis-
cous permeability k0, the tortuosity ��, and the surface
length parameter � as defined by Johnson et al.6 Charlaix
et al.7 reported experimental measurements of the dynamic
viscous permeability performed on capillary tubes and po-
rous media made of fused glass beds and crushed glass of
various sizes. They obtained good agreements with Sheng
and Zhou numerical results. Many theoretical, numerical,
and experimental investigations have been performed to pre-
dict these quantities in periodic structures. Key works in-
clude Refs. 8–14; however, no foam model geometry has
been investigated.

The purpose of this paper is to present a two-
dimensional �2D� PUC, which introduces an underlying
foam structure, but only makes use of purely geometrical
macroscopic parameters deduced from a reconstructed 3D
PUC of a real aluminum foam sample. This allows a direct
assessment of the merit of the 2D model with respect to the
dynamic viscous dissipation properties criteria. Special em-
phasis is put on the limitations of the 2D PUC model and its
rendering in the viscous dissipation properties when com-
pared to those of a real foam sample.

This paper is organized as follows. In Sec. II, the basic
equations used to calculate the various macroscopic param-
eters under consideration and the dynamic viscous perme-
ability are presented. In Sec. III, the numerical values of the
dynamic viscous permeability are compared with the models
of Johnson et al.6 and Pride et al.11 for the proposed 2D
periodic foam model geometry. The predictions are com-
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pared to measurements performed at normal incidence in an
impedance tube. Finally, Sec. IV draws the main conclusions
of this work.

II. THEORETICAL BACKGROUND

A. Dynamic viscous dissipation properties

The flow of a viscothermal fluid in a motionless homo-
geneous porous structure can be described as follows.15 The
angular frequency is � and the time dependence is
exp�−i�t�. The statistical properties of the porous frame can
be defined in homogenization volumes with dimensions
much smaller than the wavelength of the acoustic waves that
propagate in the saturating fluid. The microscopic quantities
that describe the flow �pressure p and velocity v� present
variations at the microscopic scale in the homogenization
volume. To smooth out these variations and leave only the
macroscopic variations, the symbol � �, indicating a fluid
phase average, is introduced. By definition, it relates the
macroscopic variable �a� at r to the microscopic variable a
by

�a��r,t� = �
�s+�f

I�r + x�f�x�a�r + x,t�d3x , �1�

where I is the characteristic function of the fluid phase �1 in
the fluid � f and 0 in the solid �s�, and f is a filtering smooth
function nonzero only in some �homogenization� region sur-
rounding x=0 and normalized to unity ��s+�f

I�r
+x�f�x�d3x=1.

At a given frequency, two equivalent relations linking
the gradient of the macroscopic pressure to the macroscopic
velocity are

�0�ij���
��v� j

�t
�r� = − �i�p��r� , �2�

where �0 is the equilibrium density of the fluid, and

��v�i�r� = −
1

	
kij���� j�p��r� , �3�

where � is the porosity and 	 is the viscosity of the fluid.
The symbol � corresponds to � /�r before � � and to � /�x
inside � �. The vector n is the unit outward normal from the
fluid domain. Two second order tensors, the dynamic tortu-
osity �ij��� and the dynamic permeability kij���, are defined
by Eqs. �2� and �3�. They only depend on the frequency and
on the geometry of the porous structure. These two quanti-
ties, previously defined and studied by Johnson et al.6 char-
acterize the response of the fluid to a spatially constant os-
cillating pressure gradient. When frequency decreases, the
oscillatory flow locally becomes very similar to the static
flow and Eq. �3� becomes �here and in what follows the term
r is omitted�

��v�i = −
1

	
k0ij� j�p� . �4�

This last relation is the Darcy law. A phenomenological ver-
sion of this law corresponds to a work by Darcy,16 and the
components k0ij define the static viscous permeability tensor.

When � becomes very large, the effect of viscosity becomes
negligible and �ij��� tends to the tortuosity tensor ��ij.
�ij��� and kij��� have been shown to be symmetric.17

B. Summary of numerical methods

In order to describe the periodic oscillating flow created
in a porous medium by an external unit harmonic pressure
gradient ee−i�t, one has to solve the following set of scaled
equations:

− i�



w = − �� + �w + e in � f , �5�

� · w = 0 in � f , �6�

w = 0 on �� , �7�

where e is a unit vector and 
=	 /�0. The solution to the
problems �5�–�7� is fixed by adding the condition that � is a
spatially stationary or periodic field. This unsteady Stokes
problem is relevant to sound propagation as long as the
wavelength is large enough for the saturating fluid to behave
as an incompressible fluid in volumes of the order of the
homogenization volume �a period in the case of periodic
structure�.

Writing the pressure p in terms of its mean and devia-
toric parts, p= �p�+, ��=0, the macroscopic pressure gra-
dient in Eqs. �2� and �3� is related to e in Eq. �5� by

��p� = − 	��p�	e , �8�

the small fluctuation  is related to � in Eq. �2� by

�x� = 	��p�	��x� , �9�

and v is related to w by

v = 	��p�/		w�x� . �10�

From Eqs. �8�–�10� and �3�, the viscous permeability com-
ponents are given by

��wi� = kij���ej . �11�

By using three individual solicitation vectors ei in three per-
pendicular directions, with components e j

i =�ij, Eq. �11� may
be rewritten as

kij��� = ��wi
j� , �12�

where wi
j is solution to

− i�



wi

j = − �i�
j + �wi

j + �ij in � f , �13�

with � j stationary or periodic and w j verifying the conditions
�6� and �7�. Equation �12� can also take the following forms:

kij��� = ��wl
j�il� = ��wl

jel
i� = ��w j · ei� . �14�

At �=0, Eqs. �5�–�7�, with the condition that � is a
stationary field, simply describe the viscous fluid motion in
steady state regime. This is the steady Stokes problem for
periodic structures, where w0 is the scaled static velocity
field in the pore in m2. Thus, it derives from Eq. �14� that the
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components k0ij defining the static viscous permeability in
three perpendicular directions, e j

i =�ij, are simply given by

k0ij = ��w0
j · ei� . �15�

At the opposite frequency range, when � becomes very
large, the viscous boundary layer becomes negligible and the
fluid tends to behave as a perfect one, having no viscosity. In
these conditions, the perfect incompressible fluid formally
behaves according to the electric problem.8 The components
��ij defining the tortuosity in the same perpendicular direc-
tions, e j

i =�ij, are now given by15

��ij
−1 = �E j · ei� , �16�

where ��ij
−1 is the inverse of the tortuosity tensor ��ij, and E

is the scaled electric field that solves the corresponding elec-
trical conduction problem for a porous medium filled with a
conducting fluid and having an insulating solid phase, i.e.,

E = − �� + e in � f , �17�

� · E = 0 in � f , �18�

E · n = 0 on �� , �19�

and � is a spatially stationary or periodic scalar field repre-
senting the deviatoric part of the electric potential.

In the case of periodic porous structures, permeability
and tortuosity tensors reduce to a scalar and only one dy-
namic quantity is finally necessary to represent the viscous
dissipation properties of a given material.17 An example is
given in what follows where the dynamic viscous permeabil-
ity is computed for a 2D periodic foam model geometry,
which conserves the purely geometrical macroscopic param-
eters found with a 3D �CT analysis.

III. APPLICATION TO AN OPEN-CELL ALUMINUM
FOAM

A. Basic inverse 2D foam model geometry

One approach commonly used to relate the local geom-
etry parameters of the porous material and its physical be-
havior involves the development of microstructural models.
This implies the assumption of unit cell geometries.18 Fur-
thermore, if the microstructure results from a known mecha-
nism, it is appealing to directly incorporate this knowledge in
the simulation procedure.19 For instance, foams generally re-
sult from the nucleation, growth, and expansion of gas
bubbles in a melt or reacting liquid system.20 Scientists and
mathematicians have been contemplating the structure of
soap froth for over a century, often focusing on idealized
systems that are ordered and monodisperse in response to the
Kelvin21 problem: partitioning 3D space into equal-volume
cells and minimum surface area.22 Real foams, by contrast,
are disordered, and contain an impressive variety of cell
shapes, even when the bubbles have equal volume.23 How-
ever, the complications encountered in trying to identify suit-
able unit cells that are representative of complex macrostruc-
tures of real foams generally lead to consider simple
geometries for these unit cells.24 Zheng and Ashby25 argued
that the cell geometry best representing isotropic foams, and

at the same time capable of filling space, is a tetrakaidecahe-
dron, also known as the Kelvin cell.26 This truncated octahe-
dron was considered the best unit cell for partitioning space
into cavities of equal volumes while minimizing the interfa-
cial area until 1993, where Weaire and Phelan discovered a
foam structure containing two different types of cavities of
equal volumes and with a smaller surface area than the
Kelvin foam.27 But whether it is the best monodisperse foam
still remains an open question.

In this study, it is intended to find a simple equivalent 2D
periodic foam model geometries from 3D microstructural in-
formation provided by �CT analysis. It is thus somewhat
straightforward to consider the honeycomb structure as a
starting 2D idealized PUC, the two-dimensional counterpart
of the Kelvin cell, which has been recently proved to be the
best partition for paving the two-dimensional space into
equal-surface cells and minimum length perimeter.28 Further-
more, this argument is supported by Fig. 1 showing a cross
section of the studied 92% porosity 40 ppi Duocel open-cell
aluminum foam, where ligaments are clearly organized in a
hexagonal pattern. In addition, there is experimental evi-
dence that the cross-section shape of a foam ligament is
evolving from a circle ��=85% � for low porosity foams to
convex ��
90% �, straight ��=94% �, and concave ��
=98% � triangles for high porosity foams.29

Following the previous discussion, the simplest model
one can find for the studied aluminum foam may be obtained
by assuming ligaments of circular cross section arranged in
the hexagonal pattern as shown in Fig. 2. In this particular
case, the characteristic dimensions l=2�����1−�� /3�3 /�

884 �m and r= �1−���� /�
161 �m of the hexagonal
porous geometry were found by inversion from the knowl-
edge of �=0.92 and ��
1.85 mm deduced by 3D �CT
analysis;1 here �� is the thermal characteristic length defined
as the fluid phase volume to wet surface ratio. In generating
this inverse basic model, the aim was to create the simplest
2D foam model geometry which conserves the purely geo-
metrical macroscopic parameters deduced from 3D micro-
structural analysis.

B. Numerical computations

Numerical computations were performed on the smallest
periodic rectangles RH and RV of the 2D periodic foam

FIG. 1. Virtual slice of a 10 mm in diameter 40 ppi aluminum foam sample
obtained by x-ray axial microtomography �Ref. 1�.
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model geometry depicted in Fig. 2. Using a finite element
commercial code,30 macroscopic parameters �, ��, �, k0,
��, and �0 were computed. The results are listed in Table I.
The open porosity � was computed from the volume of the
mesh, and the thermal characteristic length �� was obtained
by the volume to wet surface ratio of the mesh. The static
viscous permeability k0 and the static viscous tortuosity �0

were computed from the steady Stokes problem using Eq.
�15�, and by means of

�0 = �w0
2�/�w0�2. �20�

An equivalent result has been obtained by Norris31 on the
basis of homogenization theory, and it has been formally

expressed by Lafarge in this way by using ideas borrowed
from macroscopic electrodynamics.15,32 No-slip boundary
conditions at the pore walls and periodicity of w0 and �0

were prescribed. Additional Neumann boundary conditions
are set in the remaining lateral borders due to the symmetries
of the problems. The high frequency viscous tortuosity ��

and the viscous characteristic length � were computed using
Eq. �16� and the definition of Johnson et al.,6

2/� = �
��

E2dS/�
�

E2dV , �21�

which introduced this length-scale parameter � as the
weighted pore volume ��p� to pore surface ��s� ratio. Neu-
mann boundary conditions on the fluid-solid interface and
periodicity on the inlet-outlet surfaces were used for �. Neu-
mann boundary conditions are set in the remaining lateral
borders. The symmetry property of the viscous permeability
tensor17 is used to evaluate the uncertainty on macroscopic
parameters. The relative differences found for the horizontal
and vertical directions are less than 0.07% and the nondiago-
nal terms are actually numerically equal to zero.

The full unsteady Stokes problem was solved using the
same finite element code. No-slip boundary conditions at the
pore walls and periodicity of w��� and � were prescribed.
The number of elements and their distribution in the fluid
phase regions of RH and RV were varied, with attention paid
especially to the throat and the near-wall areas, to examine
the accuracy and convergence of the scaled velocity field
solutions. A total of 5�104 elements were used to guarantee
the variation of the solutions to within a fraction of a percent
when the distribution and number of elements were varied.
Figure 3 gives an idea of the mesh used at the highest value
of the frequency. The mesh corresponding to the PUC do-
main is plotted together with a closeup of the interface. The
present work considered quadratic Lagrange elements. Once
the scaled velocity fields are known, the dynamic viscous
permeability is computed according to Eq. �14�. Results are
presented in Fig. 4, where k��� is plotted. Once again, the
symmetry property of the viscous permeability tensor17 is
used to evaluate the uncertainty on k���. The relative differ-
ences found for the horizontal and vertical directions are less
than 5�10−6 and the nondiagonal terms are also numerically
equal to zero. In Fig. 4, the frequency dependence of the
calculated k��� is also compared to the generic asymptotic
dependences given by the models of Johnson et al.6 �JKD�
and Pride et al.11 �PMG�. The authors6,11 suggest the follow-
ing expressions for the dynamic viscous permeability:

k��� =
i	�

������0
, �22�

and

���� = ���1 +
1

i�
f��� , �23�

where � is a dimensionless viscous angular frequency given
by

FIG. 2. Basic 2D periodic foam model geometry.

TABLE I. Comparison between computed and measured macroscopic pa-
rameters.

Macroscopic parameters Computations Measurements

� �-� 0.92 0.91�0.01a

�� �mm� 1.85 2.01�0.43b

� �mm� 1.00 0.99�0.06b

k0 ��10−8 m2� 4.83 10.39�1.23c

�� �-� 1.08 1.07�0.01b

�0 �-� 1.30 ¯

aReference 36.
bReference 33.
cReference 37.
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� =
�




k0��

�
, �24�

and with the following shape function:

f��� = 1 − P + P�1 +
M

2P2 i� , �25�

where the dimensionless shape factors have been introduced,

M =
8k0��

�2�
, �26�

P =
M

4���0/��� − 1�
. �27�

It can be seen that for P=1, the PMG model reduces to the
JKD model. As expected, PMG model is correcting JKD
model to obtain the proper low frequency asymptotic behav-
ior of the calculated k��� imaginary part by the introduction
of �0. As an illustration, we show, respectively, in Fig. 5 the

horizontal components of the steady Stokes and unsteady
Stokes at 400 Hz, and the electric scaled patterns obtained
for excitation along the horizontal direction of the periodic
geometry. As previously noticed by several authors, such as
Martys and Garboczi,9 due to the nonslip condition, the fluid
flow paths are clearly more concentrated that do the electric-
current paths arising when effects of fluid viscosity are mini-
mal. As frequency increases, the scaled patterns tend to be
more and more homogeneous with decreasing stagnant areas.

C. Experimental results

We report here experimental measurements of dynamic
tortuosity and macroscopic parameters, performed on the
studied Duocel 40 ppi open-cell aluminum foam sample. The
measurement of ��, �, and �� is based on an inversion
technique.33 The inversion principle consists in minimizing
differences between measured and estimated impedances.
Measured impedance is based on a standard test method de-
scribed in ASTM E1050-86 for impedance and absorption of

FIG. 3. �Color online� PUC meshed domain �left� and closeup of the interface �right�.

FIG. 4. Dynamic viscous permeability of the basic 2D
periodic foam model geometry: numerical results and
comparison with the models of Johnson
et al. �JKD� �Ref. 6� and Pride et al. �PMG� �Ref. 11�.
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acoustical materials using a tube, two microphones, and a
digital frequency analysis system. Estimated impedance is
deduced from dynamic viscous and thermal dissipation prop-
erties taken into account through the models of Johnson
et al.6 and Champoux and Allard,34 respectively. Estimated
impedance is derived from the least mean square fit of a
function of the triplet ���, �, ��� on the frequency range of
interest, while satisfying physical restrictions on these pa-
rameters. Furthermore, it is worth noting that, considering

the large cell size of the studied sample, transition frequen-
cies of the medium are very low, on the order of a few tenths
of hertz. This means that, for this specific material, the in-
version has been realized on the high frequency regime of
the porous medium. As a consequence, the thermal charac-
teristic length �� determined by this inversion technique is
the same as the one which would have been found if
Lafarge35 model had been implemented.

Measured macroscopic parameters are also listed in
Table I. The porosity � is measured according to the so
called missing mass method36 based on mass measurement
differences of the porous bulk in air and vacuum, using a
vacuum air pump allowing to pump out air from a tank down
to an absolute pressure of 0.2 psi and a balance of readability
of 0.001 g. The experimental value of the static permeability
k0 is obtained by means of accurate measurements of differ-
ential pressures across serial mounted calibrated and un-
known flow resistances, with a controlled steady and nonpul-
sating laminar volumetric air flow as described by Stinson
and Daigle.37 Measured macroscopic parameter values are
comparable to those obtained with numerical computations
performed on the basic 2D periodic foam model geometry,
except for the static permeability k0 �resistivity �=	 /k0�
which is underestimated �overestimated� by the 2D foam
model by a factor of 2. This can be explained by the dimen-
sionality of the model. In our 2D model, ligaments are al-
ways perpendicular to the flow direction, whereas in a three-
dimensional space, ligaments of the real open-cell foam
sample also adopt other spatial orientations, that is, increas-
ing �decreasing� the permeability �resistivity� of the real me-
dium. This result is in accordance with other literature data
reported for fibrous media made from circular cross-section
fibers having porosities greater than 90%. For a flow parallel
to the fiber direction, permeability k0� is approximately equal
to twice the reported values k0� for a flow perpendicular to
the fiber direction, k0� 
2�k0� �see, for example, Refs. 38
and 39�. This property can eventually be used to correct the
found prediction with a 2D model. In our case, because of
the large cell size, the order of magnitude of the measured
resistivity is so low �
177 N m−4 s� that an error made on its
estimation, with a factor approximately equal to two
�
381 N m−4 s�, will have small influence on the resulting
dynamic dissipation properties such as k��� or ����.

Next, the dynamic viscous permeability of the 2D peri-
odic foam model geometry is determined. From the previ-
ously computed macroscopic parameters, Fig. 6 shows the
JKD and PMG dynamic permeabilities k��� compared to
impedance tube measurements. The dynamic permeability
measurements were obtained using a 44.4 mm impedance
tube with the two-cavity technique,40 where the frequency
dependant surface impedance and propagation constant
�from which all the pertaining dynamic macroscopic quanti-
ties can be obtained—see, for example, Lafarge et al.35 for
the detailed relationships� of the material are calculated from
a set of distinct acoustic impedances derived by measure-
ments taken at the surface of the porous material and
achieved by simply changing the air space depth behind the
porous material. There is good agreement between measured
and modeled dynamic permeabilities, especially at higher

FIG. 5. Scaled fields evolution with frequency.
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frequencies. One can note that the numerical computations
predict a transition frequency around 40 Hz. This very low
transition frequency is due to large cell size of the foam.
Using the experimental setup, it was not possible to measure
the low frequency behavior �need to increase significantly
the intermicrophonic distance in order to keep the proper
sensitivity on the wavelength around the transition and in the
low frequency regimes�; however, the experimental results in
the measurable frequency range �400–2500 Hz� are in good
accordance with the predicted asymptotic inertial regime.

IV. DISCUSSION AND SUMMARY

The utility of using 2D periodic model geometry to pre-
dict the dynamic viscous dissipation properties of real porous
materials is unquestionable, as numerical simulations are
usually easier and faster to make, as long as microstructural
information or purely geometric macroscopic parameters can
be readily determined on the real samples. For open-cell
foams, the microstructural information is analyzed to gener-
ate a three-dimensional periodic unit cell, so that purely geo-
metrical macroscopic parameters ��, ��� are determined, and
a basic periodic foam model geometry built by inversion.

The question that this paper has focused on is the limit
of relating dynamic viscous dissipation properties of porous
media and simplified 2D periodic model geometry. The prin-
cipal contribution of the present work is that all relevant
quantities have been computed on a basic periodic foam
model geometry, from the basis of a real open-cell aluminum
foam sample analyzed by x-ray microtomography. The ob-
tained results tend to demonstrate the important effect that
the dimensionality of the geometrical model has on the static
viscous permeability of the porous structure. The 2D peri-
odic foam model geometry considered in this paper forces
the foam ligaments to be perpendicular to the flow direction,
so that the permeability is artificially decreased. However, in

real foam structures, with various ligament orientations, the
ligaments will tend to adopt various spatial orientations, less
resistive than if they were all perpendicular to the flow di-
rection.

In summary, for a 2D periodic open-cell foam model
geometry, the dynamic viscous permeability k��� and four
asymptotic macroscopic parameters �k0, �0, �, ��� were
computed. It was shown that a relatively good estimate of
these quantities can be obtained from a basic 2D geometrical
model, except in the low frequency range, where the low
dimensionality of the model is leading to overestimated val-
ues of the permeability. However, the knowledge of this
property could be used to correct this behavior in order to
give reasonably good predictions for the dynamic viscous
dissipation properties of an open-cell foam. More generally,
this result tends to promote the idea of a three-dimensional
implementation for the computation of the dynamic viscous
dissipation properties. Nevertheless, the presented experi-
ments have been done for a relatively narrow range of varia-
tion of the dynamic tortuosity. Future experiments will in-
clude the investigation of smaller cell sizes porous media on
the order of �0.1 mm for which the transition frequencies
will be easily measurable with a classical impedance tube or
the use of a long tube �a rolled pipe of more than 50 m �Ref.
41��. This method can also be used as a bottom-up approach
for microstructure optimization of 2D sound absorbing ma-
terials.
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